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Abstract. This paper proposes a method to systematically extract the
formal semantics of ARM instructions from their natural language speci-
fications. Although ARM is based on RISC architecture and the number
of instructions is relatively small, an abundance of variations diversely
exist under various series including Cortex-A, Cortex-M, and Cortex-
R. Thus, the semi-automatic semantics formalisation of rather simple
instructions results in reducing tedious human efforts for tool develop-
ments e.g., the symbolic execution. We concentrate on six variations: M0,
M0+, M3, M4, M7, and M33 of ARM Cortex-M series, aiming at cov-
ering IoT malware. Our systematic approach consists of the semantics
interpretation by applying translation rules, augmented by the sentences
similarity analysis to recognise the modification of flags. Among 1039 col-
lected specifications, the formal semantics of 662 instructions have been
successfully extracted by using only 228 manually prepared rules. They
are utilised afterwards to preliminarily build a dynamic symbolic execu-
tion tool for Cortex-M called Corana. We experimentally observe that
Corana is capable of effectively tracing IoT malware under the presence
of obfuscation techniques like indirect jumps, as well as correctly detect-
ing dead conditional branches, which are regarded as opaque predicates.

Keywords: Semantics formalisation · Dynamic symbolic execution ·
Iot malware analysis · Natural language processing · ARM Cortex-M

1 Introduction

Symbolic execution [1] is an old, powerful, and popular technique to analyse
and/or verify software. It has been developed mainly for high-level programming
languages, such as C and Java. Recently, the number of symbolic execution tools
for binaries has gradually increased (e.g., Mcveto [2], Miasm [3], Mayhem [4],
Klee-mc [5], Codisasm [6], Be-pum [7], and Angr [8]); however, most of them
target x86 architecture. When analysing the dynamic behaviour of malware, the
major obstacles are obfuscated codes (e.g., indirect jumps, opaque predicates,
self-modification), which can be effectively solved by applying dynamic symbolic
execution (also known as concolic testing). In particular, the concolic testing
is able to dynamically explore the hidden destination of indirect jumps, whilst
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the symbolic execution can discover dead conditional branches, which will be
eventually ignored. Considering the evolving threats of IoT malware, extending
such tools to disparate architectures (e.g., ARM, MIPS, and PowerPC) becomes
highly desired. There are two existing approaches to interpreting machine codes:

– Translating to an intermediate representation (e.g., LLVM in Klee-mc and
VEX in Angr), where the coverage performance basically depends on the
translators, such as Valgrind [9] in Klee-mc and Capstone [10] in Angr.

– Interpreting directly from binary codes, such as Mcveto and Be-pum (x86).

When the obfuscations exist, the former shares the difficulties with syntax-based
disassemblers (e.g., Ida [11] and Capstone), which typically fail to disassemble
malware [12]. We adopt the latter approach, which is more powerful; however,
since it heavily requires a platform-wise implementation, an expensive engineer-
ing effort must be paid (e.g., 3155 instructions for x86-64 are counted in [13]).
Contrary to a general impression on the intricacy of binaries, the good news is:

– IoT malware is mainly an user-mode sequential program without floating-
point arithmetic. Avoiding multi-threads, weak memory models, and floating-
point arithmetic allows us to consider a simple semantics framework as the
transitions on the environment made by memory, stack, registers, and flags.

– Each instruction set officially contains a rigid natural language specification.
– Since various debuggers and emulation environments are available, the ambi-

guity occurring in the natural language processing can be resolved by testing.

This intuitively suggests the feasibility of semi-automatically formalising the
semantics of rather simple instructions from their natural language specifica-
tions.

ARM is based on RISC architecture, thus, it has relatively few instructions
(� 60–300). However, various series diversely exist such as Cortex-A for rich
operating systems (e.g., Android OS), Cortex-R for real-time systems (e.g., LTE
modems), and Cortex-M for micro-controllers (e.g., IoT devices). Moreover, each
of them has numerous variations (e.g., 16 in Cortex-A, 5 in Cortex-R, and 9 in
Cortex-M), which have been steadily increasing. Our study intentionally focuses
on ARM Cortex-M, aiming at covering IoT malware. After collecting the official
specifications of Cortex-M instructions on ARM developer website [14], their for-
mal semantics are extracted by a systematic method, and the obtained semantics
are utilised afterwards to preliminarily develop a dynamic symbolic execution
tool for Cortex-M called Corana (Cortex Analyser) [15]. Note that, instead of
trying to provide a fully automatic approach, our ultimate goal is significantly
reducing tedious human efforts by automatically handling rather simple but
many instructions, thus enables human to mainly concentrate on most complex
parts.

Extraction Overview. Figure 1 briefly illustrates an overview of the seman-
tics extraction, where manually prepared tasks are bounded with dashed boxes.
For each instruction i, among 5 sections from its natural language specification
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(Sect. 2.1), 3 sections are utilised: syntax (name and arguments of i), operation
(an informal interpretation of i), and flags-update (describing whether flags are
modified after i is executed). Given a sentence S, after normalising its syntax
(Sect. 3) (I), if S comes from the operation section, the semantics interpretation
(II) based on rewriting rules translates the normalised syntax tree to a Java code
statement (Sect. 4). If S is from the flags-update section, the similarity analy-
sis (III) recognises whether the flags are modified (Sect. 5). Thereafter, a Java
method is automatically generated by instantiating the interpreted data into a
pre-defined template, which represents the semantics framework as a transition
on the environment. The correctness of generated methods is then verified using a
conformance testing by comparing the execution results with a trusted emulator
(Sect. 6). By instantiating the extracted semantics into a prepared framework,
Corana is created (Sect. 7). Our experiments on the sampled IoT malware
reported in Sect. 8 show that Corana is capable of dynamically handling condi-
tional data instructions and indirect jumps, as well as detecting dead branches,
which are regarded as typical obfuscation techniques in IoT malware.

Fig. 1. A high-level overview of our semantics extraction approach

Related Work. There are several works focusing on extracting the specifica-
tion from natural language descriptions. Nevertheless, they are mostly for human
understanding (e.g., the requirements [16] and UML [17]), rather than the formal
semantics of binaries. An interesting approach for the synthesis of x86-64 seman-
tics is by learning formulas on BitVectors [18]. They confirmed the correctness by
random testing, in which the results between their Strata [18] and Stoke [19]
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are compared. Alternatively, an expensive human effort must be paid to describe
the formal semantics, such as 3155 x86-64 instructions in the K-framework [13].

In fact, the formal semantics implicitly appears in the implementation of
numerous binary emulators (e.g., μVision [20]) and symbolic execution tools
(e.g., Mcveto [2], Miasm [3], Mayhem [4], Klee-mc [5], Codisasm [6], Be-

pum [7], and Angr [8]). Whilst Miasm, Mayhem, Angr, and Klee-mc first
translate machine codes into an intermediate representation, Mcveto, Codis-

asm, and Be-pum directly interpret x86 binaries. Except for Mcveto and
Miasm, they support the dynamic symbolic execution. Be-pum would be the
first study of applying the binary semantics extraction from the natural language
specifications [21]. After a three-year effort of the manual implementation, Be-

pum roughly supported 250 instructions. Thereafter, the automatic extraction
successfully generated 299 among 530 collected specifications, and 5 semantics
bugs in the manual implementation were reported. At the moment, Be-pum cov-
ers around 400 instructions in total. Since the pseudocodes of x86 instructions
are explicitly included in the Intel Developer Manuals, the semantics extrac-
tion was pretty simple by preparing roughly 30 primitive functions appearing in
the pseudocodes. In contrast, the specifications of ARM instructions are given
entirely in natural language, which makes the formalisation process [22] become
more challenging.

2 Formal Semantics of ARM

2.1 Natural Language Specification

The specification of a Cortex-M instruction collected from the official ARM
developer website [14] consists of five sections: mnemonic, description, syn-
tax, operation, and flags-update. Table 1 shows an example of the rigid natural
language specification (given in English) of the instruction UMAAL in ARM
Cortex-M7.

Table 1. The natural language specification of UMAAL in ARM Cortex-M7

Mnemonic UMAAL

Description Signed multiply with accumulate long

Syntax UMAAL{cond} RdLo, RdHi, Rn, Rm

Operation The UMAAL instruction multiplies the two unsigned 32-bit integers
in the first and second operands. Adds the unsigned 32-bit integer
in RdHi to the 64-bit result of the multiplication. Adds the unsigned
32-bit integer in RdLo to the 64-bit result of the addition. Writes
the top 32-bits of the result to RdHi. Writes the lower 32-bits of the
result to RdLo

Flags-update This instruction does not affect the condition code flags
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2.2 Operational Semantics

The implementation of numerous binary analysis tools (e.g., binary emulators,
binary symbolic execution engines) implicitly contains the formal semantics of
instructions, which have been formally defined in several recent studies (e.g.,
for x86 [13,23,24]). Although the semantics of binaries is seemingly intricate for
human, the semantics framework for sequential programs is rather simple, which
rigidly consists of a tuple of four ingredients: registers, flags, memory, and stack.

Definition 1. The environment model E = 〈F,R,M,S〉 of the 32-bit ARM
Cortex-M binaries consists of:

– F : a set of 6 flags: F = {N,Z,C, V,Q,GE}
– R: a set of 17 registers:

R = {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, sp, lr, pc, apsr}

where apsr is a special register storing the values of all flags N,Z,C, V (also
includes Q,GE in some particular versions of ARM).

– M : a set of n contiguous memory locations: M = {m0,m1, . . . , mn−1}
– S(⊆ M): a set of k contiguously allocated memory to store the stack:

S = {s0, s1, . . . , sk−1} with k < n.

Since our target (IoT malware) is mainly a sequential user-mode process, the
weak memory models and multi-threads are omitted. Accordingly, the execution
of an instruction i is simply regarded as a transition ti on a quadruplet in Fig. 2:

Fig. 2. The semantics transition ti while executing an instruction i

For instance, the formal semantics of UMAAL is described in the SOS style [25]:

Rpc = k; instr(k) = umaal rdlo rdhi rn rm;Rrdlo = lo;Rrdhi = hi;
Rrn = n;Rrm = m; a = m ∗ n + lo + hi;hi′ = a � 32; lo′ = (a � 32) � 32;
〈F,R,M,S〉 → 〈F,R[pc ← k + | instr(k) |;Rrdlo ← lo′;Rrdhi ← hi′],M, S〉 [UMAAL]

2.3 Java Specification as Formal Semantics

The formal semantics of an instruction i, which is considered as a transition
ti on the environment, is represented by a Java specification built on top of a
customised class BitVec – a pair 〈bs, s〉 where bs is a BitSet value (a 32-bit
BitVector supported in Java by default) and s is a string. After executing i, the
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concrete result of the operators is stored in bs whilst the corresponding symbolic
formula (in SMT format of BitVector theory) is represented by s (an example is
shown in Sect. 7.1). In particular, this formal specification is technically obtained
by instantiating the missing parameters into a pre-defined Java template:

public void $name($params, Character suffix) {
arithmeticMode = $arithmeticMode;
char[] flags = new char[]{$flags};
BitVec result = null;
$execCode
if (suffix != null && suffix == ’s’) {

if (result != null) {
updateFlags(flags, result);

}
}

}

where:

1. The parameters that need to be instantiated: params (the missing arguments
of this method), name (the instruction name), arithmeticMode (to specify
whether the floating-point arithmetic is required), execCode (the main formal
interpreted operations), and flags (the list of flags that might be modified).

2. Default arguments: suffix (if the suffix s occurs, the flags appearing in flags
might be optionally updated based on the result of operators in execCode).

3. Manually prepared methods: updateFlags (update flags occurring in flags).

For instance, the generated Java method representing the semantics of UMAAL
is described as follows, where dashed boxes indicate the instantiated parameters:

public void UMAAL(Character l, Character h, Character n,
Character m, Character suffix) {
arithmeticMode = ArithmeticMode.BINARY;
char[] flags = new char[]{};
BitVec result = null;
result = mul(val(n),val(m));
result = add(result,val(h));
result = add(result,val(l));
write(h,shift(result,Mode.RIGHT,32));
write(l,shift(shift(result,Mode.LEFT,32),Mode.RIGHT,32));
if (suffix != null && suffix == ’s’) {

if (result != null) {
updateFlags(flags, result);

}
}

}

To interpret the Java specifications, 35 simple primitive functions are manually
prepared, including arithmetic operators (e.g., add, sub, mul), logical operators
(e.g., and, or, xor), and IO operators (e.g., write, load, store). Note that, some
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pre-defined functions do not have any corresponding representations in SMT
format by default, thus their macros must be additionally declared (e.g., bvmin,
bvmax, bvabs, bvclz). Among them, some instructions especially contain loops,
which must be unfolded to be acceptable by theorem provers. A representative
instance is the clz r instruction, which aims at counting the number of leading
zeros of the value stored in the register r. Whilst its standard implementations
normally require executing a loop, considering a 32-bit architecture, its macro
in SMT format can be unfolded by iterating up to 32 times as indicated below:

(declare−const r0 ( BitVec 32))
(declare−const c0 ( BitVec 32))
... same declarations for r1,c1 ... r31,c31 ...
(declare−const r32 ( BitVec 32))
(declare−const c32 ( BitVec 32))
(declare−const z ( BitVec 32))
(declare−const m ( BitVec 32))
(define−fun clz ((x ( BitVec 32))) ( BitVec 32)
(if (and

(= r0 x) (= z #x00000000) (= m #x00000001) (= c0 #x00000020)
(= c1 (ite (bvsgt (bvashr r0 m) z) (bvsub c0 m) c0))
(= r1 (ite (bvsgt (bvashr r0 m) z) (bvashr r0 m) r0))
... same declarations for c2,r2 ... c31,r31 ...
(= c32 (ite (bvsgt (bvashr r31 m) z) (bvsub c31 m) c31))
(= r32 (ite (bvsgt (bvashr r31 m) z) (bvashr r31 m) r31))

) c32 #x00000021))

3 Syntax Normalisation

Before proceeding further analyses, each raw sentence in the operation section
is sequentially normalised by parsing, lemmatisation, and words refinement. In
the implementation, we utilise parsing and lemmatisation modules provided in
an open library namely NLTK [26]. Figure 3 illustrates an example of the nor-
malisation applied on the first sentence in the operation section of the UMAAL
specification: S – “The UMAAL instruction multiplies the two unsigned 32-bit
integers in the first and second operands”, which contains three sequential steps.

(1) Parsing. Parsing is applied for transforming each sentence to its structured
syntax tree along with the corresponding labels in the grammatical categories
(e.g., NP – Noun Phrase, DT – Determiner) based on the context-free grammar.

(2) Lemmatisation. Words written in English might have various expressions,
such as conjugations and plural forms. Lemmatisation aims at unifying them to
their standardised state. For instance, in Fig. 3, the words bounded with dashed
boxes at the leaves of the syntax tree are the normalised results of this lemma-
tisation: multiplies → multiply, integers → integer, and operands → operand.
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Fig. 3. The syntax tree, lemmatisation results, and TF·IDF of words in S

(3) Words Refinement. The popular measure TF·IDF [27] is utilised to effec-
tively refine unimportant words in each sentence. For instance, the TF·IDF of
words in S are put along with the leaves of the syntax tree. By setting a threshold
h = 0.05, the strikethrough words in Fig. 3 are deleted and the removal recur-
sively propagates to the root. Note that, the instruction name is also removed.

4 Semantics Interpretation by Translation Rules

Our semantics interpretation adopts a rule-based approach, which utilises the
normalised syntax tree of sentences as the input. The key intuitive idea is: a
less number of manually prepared rules can cover a large number of instructions.
Firstly, we extract some popular phrases from the normalised syntax trees, which
we named NP-Phrases (Sect. 4.1). Thereafter, a set of appropriate instructions
is carefully selected to obtain an optimal trade-off – the ratio between the num-
ber of rules needed and the number of covered instructions (Sect. 4.2). Next,
the translation rules are manually described by a recursive process (Sect. 4.3).
Eventually, by employing these prepared rewriting rules, the formal semantics of
instructions are interpreted in a bottom-up manner (Sect. 4.4). Note that, since
our method is sentence-wise, the interpretation proceeds in sequence. Therefore,
if an operation description is constituted of multiple sentences, the actual order
of generated Java statements rigidly corresponds to the order of these sentences.

4.1 NP-Phrases Extraction

As a result of the syntax normalisation in Sect. 3, all unimportant terms in the
syntax trees are finally removed. We now extract some particular phrases by
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concentrating on sub-trees with the root label “NP”. An NP-Term is a flattened
string of a sub-tree in the normalised syntax tree in which only the root is labelled
“NP”. An NP-Phrase is either an NP-Term or the flattened string of the whole
normalised syntax tree after substituting each NP-Term by an indexed blank
hole �i. For instance, in Fig. 3, the sub-trees surrounded by dashed lines are
NP-Terms, and the extracted NP-Phrases are: “two unsigned 32-bit integer”,
“first and second operand”, and “multiply �2 in �1”. These NP-Phrases are
further utilised as the input of the instruction selection strategy described in
Sect. 4.2.

4.2 Instructions Selection Strategy

We observe: (1) an instruction may carry various semantics in different variations
(e.g., the instruction UASX appears both in M33 and M4, but the flag-updates
sections are slightly different), and (2) since some instructions are presented
by long and complex descriptions though appearing only once among all varia-
tions, they do not pay off the effort for preparing the corresponding rules (e.g.,
STLEX, VLLDM, and LDAEX only appear in M33). Thus, we aim to seek a
set of appropriate candidates to obtain an optimal trade-off. The very high-level
strategy is:

The importance of an instruction i is measured by the sum of TF·IDF scores
of NP-Phrases in i. Select k instructions that maximise the sum divided by k.

To be more specific, for a list of k chosen candidates, we use ϕ(k) to measure
the efficiency of the selection strategy over all instructions in six variations. The
greater ϕ(k), the better selected candidates. Let I is the set of all n instructions:

I = {i1, i2, . . . , in}
where an instruction i consists of a set Ti including w NP-Terms:

Ti = {〈t1, f1〉, 〈t2, f2〉, . . . , 〈tw, fw〉}
where tj is the jth NP-Term, and fj is the frequency of tj in i. Let p(tj) is the
proportional occurrence of tj over all NP-Terms in I, the importance of i over I
is defined as:

mi =
w∑

j=1

p(tj).fj

Let M is the sorted set (descending) of all m:

M = sorted(m1,m2, . . . , mn−1,mn)

Let Mq is the qth value of M , k is the number of expected candidates, ϕ(k) is
then defined as:

ϕ(k) =
1
k

k∑

q=1

Mq
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Now, given k, this strategy can effectively obtain an optimal trade-off by taking
the first k candidates in M to make ϕ(k) as large as possible. Obeying to this
strategy, 692 instructions are selected. After combining similar NP-Phrases as
conditional terms, 228 selected NP-Phrases become a set of left-hand side (LHS)
candidates, which is further utilised as the input of the rules preparation process.

4.3 Translation Rules Preparation

A semantics interpretation rule translates a left-hand side (LHS) – an NP-Phrase,
to a right-hand side (RHS) – a Java code statement. Note that, the LHS can-
didates, which are automatically selected by the strategy presented in Sect. 4.2,
are classified into 2 categories: NP-Phrase LHS (e.g.,“first and second operand”)
and Context-Based LHS (e.g.,“multiply �2 in �1”). Additionally, a conditional
LHS can be used to combine LHSes carrying similar semantics (e.g., “halfword
data” and “halfword value”: 〈halfword data | halfword value〉). The RHSes are
systematically prepared by a flow depicted in Fig. 4, including 5 following steps:

1. The set of LHS candidates (C) is sorted (descending) by their frequency.
2. The highest frequency LHS c ∈ C is completed as a rule r : c → u (u is the

corresponding RHS which is directly interpreted by manually checking the
specifications consisting of c).

3. R = R ∪ {r}; C = C \ {c}.
4. Rules in R then rewrite remaining LHSes in C. When a substitution to � in

ci ∈ C occurs, the LHS of ci is updated.
5. Continue until C = ∅, a set of rules R is completely obtained.

Fig. 4. Recursive rewriting rules preparation

In our experiment, 228 LHSes are automatically extracted. Thereafter, 228
rewriting rules are manually prepared, which is constituted of 208 NP-Phrase
rules and 20 Context-Based rules. The number of rules containing conditional
LHSes is 85.
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4.4 A Comprehensive Example

Recall the sentence S in the Sect. 3. After sequentially normalising the syntax
tree, a set of NP-Phrases is obtained C = {c1, c2, c3} where c1 : first and second
operand, c2 : two unsigned 32-bit integer, and c3 : multiply �2 in �1. Note that
c3 is obtained by substituting c2 and c1 in “multiply two unsigned 32-bit integer
in first and second operand” by �2 and �1, respectively. Since in the syntax
tree, lower-degree nodes are practically more likely to occur than higher ones,
the frequency ordering is: c1 > c2 > c3. Three rules are then prepared as follows:

1. Select c1 and manually prepare r1 : first and second operand → rn, rm. By
r1, c2 is kept unchanged and c3 is rewritten to c′

3 = multiply �2 in rn,rm.
2. Select c2 and manually prepare r2 : two unsigned 32-bit integer → val(�3),

val(�4). By r2, c′
3 is rewritten to c′′

3 : multiply val(�3), val(�4) in rn, rm.
3. Select c3 and manually prepare r3 : multiply (val�3), val(�4) in rn, rm →

mul(val(rn), val(rm)). Expected rules r1, r2, r3 are now completely obtained.

Note that, if some rules already exist, the preparation simply reuses them. Even-
tually, when all the rules are prepared, the formal semantics of S represented by
a Java statement is interpreted in a bottom-up manner as illustrated in Fig. 5:

multiply two unsigned 32-bit integer in first and second operand
r1→ multiply two unsigned 32-bit integer in rn, rm
r2→ multiply val(�3), val(�4) in rn, rm
r3→ mul(val(rn), val(rm))

Fig. 5. Semantics interpretation in a bottom-up manner
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5 Detecting Modified Flags

Detecting the modification of flags in instructions is practically not straightfor-
ward since (1) their descriptions are written totally in natural language and (2)
synonyms are diversely used in the flags-update sections as indicated in Table 2.

Table 2. The diversity of flags-update descriptions

Flags-update descriptions Implications

This instruction does not change the flags

This instruction does not affect the condition code flags Flags are unchanged

The V flag is left unmodified

This instruction updates the N, Z, C and V flags according to
the result

Modify specific flags
Updates the N and Z flags according to the result. Does not
affect the C and V flags

Figure 6 briefly illustrates our proposed solution. Instead of employing a rule-
based approach, we adopt a sentences similarity analysis by utilising a well-
known topic modeling method called Latent Dirichlet Allocation (LDA) [28]. To
train an LDA model, each sentence is firstly represented as a frequency vector of
words. Thereafter, when all parameters of the model have already been trained,
a topic is considered as a distribution of words and a sentence is represented
as a distribution of topics, which gives their classification based on a similarity
measure. Note that, before training the model, each sentence from the flags-
update section is sequentially normalised by lemmatisation and words refinement
(previously mentioned in Sect. 3). After training (unsupervised) the model by
all sentences (1), the topic distribution of a targeted sentence s and the model
sentence m = “update affect set change modify” are estimated as two dimensional

Fig. 6. Detecting modified flags by applying a sentences similarity analysis
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real-number vectors #»vs, #  »vm, respectively (2). In fact, m is reasonably chosen since
it caries a strong meaning of modified. The similarity between s and m is then
evaluated by calculating the Cosine similarity between #»vs and #  »vm (3). If the result
does not exceed a threshold t, s is considered as modified, otherwise unmodified.
Our module utilises an LDA implementation provided in Sklearn [29], in which
the hyperparameters are set: α = 0.1, β = 0.1, ntopics = 10, twords = 10, niters
= 2000, and t = 0.85. The major advantage behind this approach is that, when
extending our method to other architectures, we solely need to redefine t and
a new model sentence m, then the algorithm handles the rest. Comparing with
rule-based approaches in case applied, this method is obviously more generalised.

6 Conformance Testing

To verify the correctness of a generated Java specification m, we first apply
JDart [30] – a dynamic symbolic execution engine built on top of Java Path-
finder [31], to generate a set of test inputs T which covers all feasible execution
paths of m. The conformance testing is then performed by comparing the exe-
cution results of T by m and μVision [20] – a trusted binary emulator support-
ing numerous ARM variations. Figure 7 illustrates how our conformance testing
works:

Fig. 7. Conformance testing on the generated Java methods

where: (1) applying dynamic symbolic execution on m, (2) all possible test cases
T are generated by JDart, (3) each test case in T is simultaneously executed by
m and μVision, and (4) two environments after execution are compared. Finally,
if all the test results are passed, it is argued that the correctness of m is verified.

7 The CORANA Tool

The extraction of the formal semantics explicitly implies the generation of a
dynamic symbolic execution tool for ARM Cortex-M. By utilising the extracted
Java methods, a preliminary version of this tool called Corana [15] has been
developed, which is able to directly interpret and trace obfuscated IoT malware.
Corana takes the advantages of existing powerful engines: Capstone [10] as
the single-step disassembler, and Z3 Solver [32] as the back-end theorem prover.
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7.1 CORANA Architecture

Figure 8 depicts a high-level architecture of Corana, as well as describes how it
precisely traces and incrementally reconstructs the Control Flow Graph (CFG)
of obfuscated ARM binaries. Corana is constituted of two main components:
(I) An execution kernel provides the semantics framework and the path condi-
tion generation, and (II) A symbolic executor, which consists of the generated
Java methods built on top of primitive functions, dynamically executes inputted
instructions and generates the CFG based on the (in)feasibility of tracing results.

Fig. 8. Corana architecture

(1) Single-step disassembles the ARM binary file starting from the program
counter register pc to obtain an instruction i.

(2) Symbolically executes i, updates the environment and path conditions.
(3) The feasible paths are traced and tested in the depth-first manner, which

incrementally generates the CFG.
(4) Repeats disassembling until reaching the end of the binary file or obtaining

an unsupported instruction.

To be more specific, step (3) has two main objectives: exploring the destination of
indirect jumps, and decrypting self-modifying codes (if exist). Although current
IoT malware infrequently contains self-modification, indirect jumps widely occur.

7.2 Path Conditions Generation

By introducing the customised class BitVec, the environment transformations is
implicitly embedded inside the BitVec operators. Since BitVec computations are
totally declared within the primitive functions, the environment is updated with-
out paying an extra effort. As a result, the path conditions are also generated.
For instance, the instruction i : subs r1, r0, r1 sets r1 by r0−r1 and updates flags
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based on the subtraction. Let r1, r0, z are BitVec values: r1 = 〈x; a〉, r0 = 〈y; b〉,
z = 〈z0; c〉, where x, y, z0 are BitSet values and a, b, c are symbolic values. The
semantics transitions on the register r0, r1 and the flag z are produced as follows:

r0 : 〈y; b〉 i→ 〈y; b〉
r1 : 〈x; a〉 i→ 〈y − x ; (bvsub b a)〉
z : 〈z0; c〉 i→ 〈(y − x) == 0 ; (= (bvsub b a) 0)〉

where bvsub is the subtraction operator supported in BitVector theory by
default. When a conditional branch occurs at a conditional jump (e.g., bne) or
a conditional data instruction (e.g., addne), Corana symbolically executes this
instruction and generates the new path conditions by taking the conjunctions
of the pre-condition and the new suffixes at both true and false branches. For
instance, if an instruction bne occurs right after the i : subs r1, r0, r1, Corana

adds the suffix ne and its negation ¬ne to the current path condition ψ (pre-
condition) of true and false branches, respectively: (ψ true = ψ ∧ (not (=
(bvsub b a) 0))) and (ψ false = ψ ∧ (= (bvsub b a) 0)) to obtain the post-
conditions (in ARM, the conditional suffix ne means checking ¬z). While exe-
cuting another instruction i′ that constitutes of more complex semantics (e.g.,
UMALL), the environment transforming and path condition generating become
seemingly complicated, but since i′ is a combination of primitive functions, it
will be automatically handled.

8 Experiments

8.1 Semantics Extraction

Table 3 shows the experimental result of the semantics formalisation. Among
1039 collected ARM instructions over 6 variations, the Java specifications of 692
instructions (66.60%) are generated by using only 228 rewriting rules (approxi-
mately 0.33 rules are needed to cover an instruction) and 662 of them (63.72%)
have passed the conformance testing. We observed two reasons causing failures:

Incorrect Modified Flags Detection. The presence of relatively complex
synonym phrases such as “left unmodified” confuses our sentences similarity
analysis. For instance, the descriptions of flags-update sections in the instruc-
tion RORS (Cortex-M0 and Cortex-M0+) contain a sentence “The V flag is left
unmodified”, which is challenging to be correctly distinguished by our method
at the moment.

Inappropriate Sentences Ordering in the Operation Sections. Our
method interprets in a sentence-wise manner, which follows the ordering of
sentences in the operation section. Thus, if the sentences have an inappropri-
ate order, failures occur. For instance, the instruction STRB (Cortex-M7) is
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described as “STRB instruction store a register value into memory. Unsigned
byte, zero extend to 32 bits on loads”, but the correct semantics should be defined
in the opposite order: “STRB instruction zero-extend an unsigned byte value then
store into memory”.

Table 3. The number of successfully extracted semantics over six variations

Variation Collected Selected Generated Verified

Cortex-M0 63 44 (69.84%) 44 (69.84%) 41 (65.08%)

Cortex-M0+ 63 44 (69.84%) 44 (69.84%) 41 (65.08%)

Cortex-M3 129 80 (62.02%) 80 (62.02%) 74 (57.36%)

Cortex-M4 244 167 (68.44%) 167 (68.44%) 161 (65.98%)

Cortex-M7 261 178 (68.20%) 178 (68.20%) 172 (65.90%)

Cortex-M33 279 179 (64.16%) 179 (64.16%) 173 (62.00%)

Total 1039 692 (66.60%) 692 (66.60%) 662 (63.72%)

8.2 Dynamically Handling Jumps by CORANA

Since IoT malware rarely contains self-modifications, typical disassemblers (e.g.,
Capstone and Ida) are able to correctly disassemble them. Nevertheless, when
control structures matter, such as VM-aware malware [33] and trigger-based
behaviour [34,35], revealing the hidden destination of jumps becomes immensely
essential. We describe how Corana traces obfuscated IoT malware by sampling
37c81e – a Linux.Mirai detected by VirusTotal [36], taken from VirusShare [37].

Conditional Jumps. Figure 9 illustrates the presence of a conditional jump
beq at 0x37648, where Corana adds eq and ¬eq to the path conditions of true
and false branches, respectively. Afterwards, Corana detects that these paths
are both feasible by checking the satisfiability of their symbolic constraints. As
a result, instead of solely executing the next instruction at 0x3764C, Corana

additionally traces the true branch at 0x37658, which presents a correct execu-
tion behaviour.

Dead Conditional Jumps. Figure 10 depicts an example of a conditional jump
bne at 0x5C354, where Corana detects that the path constraints of the true and
the false branches are unsatisfiable and satisfiable, respectively. In other words,
the true branch will be never executed and hence, this jump will be eventually
ignored. This is regarded as the opaque predicates obfuscation in IoT malware.

Indirect Jumps. Figures 11 and 12 describe how Corana dynamically handles
indirect jumps. At 0x00058, when a conditional indirect jump bxeq lr occurs,
Corana adds eq and ¬eq to the path conditions of true and false branches,
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respectively. It then checks the feasibility of these branches and detects that
both of them are feasible. Especially, by testing with a satisfiable instance at
0x00058, Corana identifies a possible hidden destination stored in lr: 0x0004.

Fig. 9. Conditional jump handling Fig. 10. Dead jump detection

Fig. 11. Disassembled indirect jump Fig. 12. Indirect jump traced by Corana

9 Conclusion

Through our study, the feasibility of extracting the formal semantics from natu-
ral language specifications has been investigated. To demonstrate this possibil-
ity, we present an approach to systematically formalise the semantics of ARM
Cortex-M instructions from their official specifications over six variations. Note
that, instead of aiming to provide a fully automatic method, our ultimate goal
is effectively reducing a large amount of tedious human effort on the imple-
mentation of tools relying on formal methods. Additionally, by instantiating the
extracted semantics into a prepared framework, a dynamic symbolic execution
tool for Cortex-M called Corana has been preliminarily developed, which is
able to correctly trace IoT malware under the presence of obfuscation tech-
niques such as indirect jumps and opaque predicates. We expect our method
can be practically extended to other architectures in the same manner without
adding complicated modifications. Furthermore, we do hope our work enlightens
the ability to leverage the benefits of adopting natural language processing and
machine learning to automate rather simple but tedious tasks in the development
of formal methods.

Future Directions. Beyond six previously mentioned variations, the pro-
posed method is being considered to apply on other architectures such as MIPS
and other ARM Cortex series. Contrary to Cortex-M, the specifications of
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Cortex-A and Cortex-R are not structurally documented (only PDF files are
available on ARM Developer Website at the moment). After parsing the struc-
tured data from these PDFs, our approach can be feasibly applied for them in
the same manner.
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